midgard.gnss
midgard.gnss.antenna_calibration
Handling of GNSS antenna calibration information based on ANTEX file
Description:
The module includes a class for handling of GNSS antenna information based on read GNSS ANTEX file (see Rothacher, 2010).
Reference:
Rothacher, M. and Schmid, R. (2010): "ANTEX: The antenna exchange format", version 1.4, Forschungseinrichtung Satellitengeodäsie, TU München
Example:
Import AntennaCalibration class
from midgard.gnss.antenna_calibration import AntennaCalibration
Get instance of AntennaCalibration class by defining ANTEX file path
ant = AntennaCalibration(file_path="igs14.atx")
AntennaCalibration
Full name: midgard.gnss.antenna_calibration.AntennaCalibration
Signature: (file_path: Union[str, pathlib.PosixPath]) -> None
A class for representing GNSS antenna calibration data
The attribute "data" is a dictionary with GNSS satellite PRN or receiver antenna as key. The GNSS satellite antenna corrections are time dependent and saved with "valid from" datetime object entry. The dictionary looks like:
dout = { <prn> : { <valid from>: { cospar_id: <value>,
sat_code: <value>,
sat_type: <value>,
valid_until: <value>,
azimuth: <list with azimuth values>,
elevation: <list with elevation values>,
<frequency>: { azi: [<list with azimuth-elevation dependent corrections>],
neu: [north, east, up],
noazi: [<list with elevation dependent corrections>] }}},
<receiver antenna> : { azimuth: <list with azimuth values>,
elevation: <list with elevation values>,
<frequency>: { azi: [<array with azimuth-elevation dependent corrections>],
neu: [north, east, up],
noazi: [<list with elevation dependent corrections>] }}}
with following entries:
| Value | Type | Description |
|--------------------|---------------------------------------------------------------------------------------------|
| azi | numpy.ndarray | Array with azimuth-elevation dependent antenna correction in [mm] with |
| | | the shape: number of azimuth values x number of elevation values. |
| azimuth | numpy.ndarray | List with azimuth values in [rad] corresponding to antenna corrections |
| | | given in azi
. |
| cospar_id | str | COSPAR ID azi
or noazi
. |
|
Attributes: data (dict): Data read from GNSS Antenna Exchange (ANTEX) file file_path (str): ANTEX file path
Methods: satellite_phase_center_offset(): Determine satellite phase center offset correction vectors given in ITRS satellite_type(): Get satellite type from ANTEX file (e.g. BLOCK IIF, GALILEO-1, GALILEO-2, GLONASS-M, BEIDOU-2G, ...) _used_date(): Choose correct date for use of satellite antenna corrections
midgard.gnss.compute_dops
Compute DOP (dilution of precision)
Description:
Calculate GDOP, PDOP, TDOP, HDOP and VDOP based on elevation and azimuth between station and satellite for each observation epoch.
compute_dops()
Full name: midgard.gnss.compute_dops.compute_dops
Signature: (az: numpy.ndarray, el: numpy.ndarray) -> Tuple[numpy.ndarray, ...]
Compute dilution of precision (DOP) for an observation epoch
It should be noted, that the weight of observations is not considered. The observation weight matrix is assumed to be an identity matrix. The cofactor matrix Q is related to a topocentric coordinate system (north, east, up):
| q_nn q_ne q_nu q_nt |
Q = | q_ne q_ee q_eu q_et |
| q_nu q_eu q_nn q_nt |
| q_nt q_et q_nt q_tt |
Reference: Banerjee, P. and Bose, A. (1996): "Evaluation of GPS PDOP from elevation and azimuth of satellites", Indian Journal of Radio & Space Physics, Vol. 25, April 1996, pp. 110-113
Args:
az
: Satellite azimuth angle (radians)el
: Satellite elevation angle (radians)
Returns:
Tuple with GDOP, PDOP, TDOP, HDOP and VDOP
midgard.gnss.gnss
Midgard library module including functions for GNSS modeling
Example:
from migard.gnss import gnss
Description:
This module will provide functions for GNSS modeling.
get_number_of_satellites()
Full name: midgard.gnss.gnss.get_number_of_satellites
Signature: (systems: numpy.ndarray, satellites: numpy.ndarray, epochs: numpy.ndarray) -> numpy.ndarray
Get number of satellites per epoch
Args:
satellites
: Array with satellite PRN number together with GNSS identifier (e.g. G07)systems
: Array with GNSS identifiers (e.g. G, E, R, ...)epochs
: Array with observation epochs (e.g. as datetime objects)
Returns:
Number of satellites per epoch
get_rinex_file_version()
Full name: midgard.gnss.gnss.get_rinex_file_version
Signature: (file_path: pathlib.PosixPath) -> str
Get RINEX file version for a given file path
Args:
file_path
: File path.
Returns:
RINEX file version
obstype_to_freq()
Full name: midgard.gnss.gnss.obstype_to_freq
Signature: (sys: str, obstype: str) -> float
Get GNSS frequency based on given GNSS observation type
Args:
sys
: GNSS identifier (e.g. 'E', 'G', ...)obstype
: Observation type (e.g. 'L1', 'P1', 'C1X', ...)
Return: GNSS frequency in [Hz]
midgard.gnss.klobuchar
Klobuchar model for computing the ionospheric time-delay correction.
Description:
Compute the ionospheric time-delay correction for the single-frequency by broadcast model (klobuchar model). GPS and Beidu satellite navigation systems use this model. The implementation is based on original paper of Klobuchar (1987). The Klobuchar model is also described in Figure 20-4 in IS-GPS-200J.
References:
-
IS-GPS-200J (2018): "Global positioning systems directorate systems engineering & integration interface specification IS-GPS-200, Navstar GPS space Segment/Navigation user segment interfaces, 25. April 2018
-
Klobuchar, J.A. (1987): "Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-23, No. 3, May 1987, https://scinapse.io/papers/2058160370
-
Sanz Subirana, J., Juan Zornoza, J.M. and Hernandez-Pajares, M. (2013): "GNSS data processing - Volume I: Fundamentals and Algorithms", TM-23/1, European Space Agency, May 2013
klobuchar()
Full name: midgard.gnss.klobuchar.klobuchar
Signature: (time, ion_coeffs, rec_pos, az, el, freq_l1, freq=None, logger=functools.partial(<function log at 0x7f04e3d4fe20>, level='debug'))
Compute the ionospheric time-delay correction for the single-frequency by broadcast model (klobuchar model)
GPS and BeiDou satellite navigation systems use this model. The implementation is based on original paper of Klobuchar, J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users https://scinapse.io/papers/2058160370
Args:
time
: GPSTion_coeffs
: iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3} as vectorrec_pos
: receiver position {lat,lon,h} [rad, rad, m] as vectoraz
: azimuth angle [rad]el
: elevation angle [rad]system
: GNSS systemfreq_l1
: L1 frequency of given GNSS in [Hz]freq
: Frequency in [Hz] for which ionospheric delay should be determined.logger
: Function that logs
Returns:
iono_delay
: computed path delay for given frequency [m]L1_variance
: corresponding variance [m^2]
TODO: freq_L1 should be determined in klobuchar routine and argument be replaced by system. constants needed in Midgard.
main()
Full name: midgard.gnss.klobuchar.main
Signature: ()
midgard.gnss.solution_validation
comp_quality_indicators()
Full name: midgard.gnss.solution_validation.comp_quality_indicators
Signature: (sol_vc_mat: numpy.ndarray) -> tuple
Compute quality indicators
Following quality indicators are computed 1. compute the standard error ellipse(SEE) 2. compute the distance root mean squared (DRMS) 3. compute the circular error probable (CEP)
Args:
sol_vc_mat
: Variance-covariance matrix of the unknown
Returns:
Tuple with DRMS, CEP and SEE
epilog (str)
epilog = '\n**EXAMPLE**\n sol_validation (residuals, alpha_sign_level n_params)\n args:\n residuals (I): postfit residuals \n alpha_sign_level(I): alpha significance level and defines the rejection area.\n possible values of alpha = 0.05 (95%), 0.01 (99%) and 0.001 (99.9%)\n n_params (I): number of estimated parameters (states).\n \n\nKeywords: Chi-square distribution,\n'
get_my_parser()
Full name: midgard.gnss.solution_validation.get_my_parser
Signature: ()
main()
Full name: midgard.gnss.solution_validation.main
Signature: ()
Main program for testing solution validation implementation
TODO: This should be done via midgard/tests/gnss !!!
prolog (str)
prolog = '\n**PROGRAM**\n solution_validation.py\n \n**PURPOSE**\n Perform Chi-square test for residuals. Degrees of freedom (df) refers to the number of values that\n are free to vary df = number of valid satellites (nv) - number of parameters to be estimated (nx) - 1.\n GNSS solution validation based on the argument alpha, the level of significance (e.g. 99%), and\n defines the rejection level of the crossing events. \n Note that this is different from the false alarm rate, which instead refers to error type I\n \n**USAGE**\n'
sol_validation()
Full name: midgard.gnss.solution_validation.sol_validation
Signature: (residuals: numpy.ndarray, alpha_siglev: float, n_params: int = 4) -> bool
Validating the GNSS solution is carried out using Chi-square test
Use Chi-square test for outlier detection and rejection.
Args:
residuals
: Postfit residuals for all satellites in each epochalpha_siglev
: Alpha significance leveln_params
: Number of parameters (states), normally 4 parameters for station coordinates and receiver clock
Returns:
Array containing False for observations to throw away.